Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene.

نویسندگان

  • Pierdomenico Perata
  • Laurentius A C J Voesenek
چکیده

Submergence of rice (Oryza sativa) by flash flooding is a major constraint to rice production in Asia. Rice cultivars vary in their capacity to tolerate complete submergence; quantitative trait loci analyses have revealed that a large portion of this variation in submergence tolerance can be explained by one locus (Sub1) on chromosome 9. Two recently published papers (Takeshi Fukao et al. and Kenong Xu et al.) present evidence that a transcription factor belonging to the B-2 subgroup of the ethylene response factors (ERFs)/ethylene-responsive element binding proteins (EREBPs)/apetala 2-like proteins (AP2) within the Sub1 locus determines submergence tolerance in rice. These genes control highly conserved hormonal, physiological and developmental processes that determine the rate of elongation when submerged.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice.

Submergence-1 (Sub1), a major quantitative trait locus affecting tolerance to complete submergence in lowland rice (Oryza sativa), contains two or three ethylene response factor (ERF)-like genes whose transcripts are regulated by submergence. In the submergence-intolerant japonica cultivar M202, this locus encodes two ERF genes, Sub1B and Sub1C. In the tolerant near-isogenic line containing the...

متن کامل

The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors.

We previously characterized the rice (Oryza sativa) Submergence1 (Sub1) locus encoding three ethylene-responsive factor (ERF) transcriptional regulators. Genotypes carrying the Sub1A-1 allele are tolerant of prolonged submergence. To elucidate the mechanism of Sub1A-1-mediated tolerance, we performed transcriptome analyses comparing the temporal submergence response of Sub1A-1-containing tolera...

متن کامل

The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice.

Submergence and drought are major constraints to rice (Oryza sativa) production in rain-fed farmlands, both of which can occur sequentially during a single crop cycle. SUB1A, an ERF transcription factor found in limited rice accessions, dampens ethylene production and gibberellic acid responsiveness during submergence, economizing carbohydrate reserves and significantly prolonging endurance. He...

متن کامل

The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice W OA

Submergence and drought are major constraints to rice (Oryza sativa) production in rain-fed farmlands, both of which can occur sequentially during a single crop cycle. SUB1A, an ERF transcription factor found in limited rice accessions, dampens ethylene production and gibberellic acid responsiveness during submergence, economizing carbohydrate reserves and significantly prolonging endurance. He...

متن کامل

Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice.

BACKGROUND AND AIMS Tolerance of complete submergence is recognized in a small number of accessions of domesticated Asian rice (Oryza sativa) and can be conferred by the Sub1A-1 gene of the polygenic Submergence-1 (Sub1) locus. In all O. sativa varieties, the Sub1 locus encodes the ethylene-responsive factor (ERF) genes Sub1B and Sub1C. A third paralogous ERF gene, Sub1A, is limited to a subset...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in plant science

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2007